Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Technical Paper

Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations

2016-04-05
2016-01-0593
Reynolds-averaged Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result for the majority of turbulent flows. This could lead to the conclusion that multi-cycle internal combustion engine (ICE) simulations performed using RANS must exhibit a converging numerical solution after a certain number of consecutive cycles. However, for some engine configurations unsteady RANS simulations are not guaranteed to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS modeling to simulate multiple engine cycles, the cycle-to-cycle variations (CCV) generated from different initial conditions at each cycle are not damped out even after a large number of cycles. A single-cylinder GDI research engine is simulated using RANS modeling and the numerical results for 20 consecutive engine cycles are evaluated for two specific operating conditions.
Technical Paper

Cylinder Pressure Analysis of a Diesel Engine Using Oxygen-Enriched Air and Emulsified Fuels

1990-09-01
901565
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
Journal Article

Cylinder-to-Cylinder Variations in Power Production in a Dual Fuel Internal Combustion Engine Leveraging Late Intake Valve Closings

2016-04-05
2016-01-0776
Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode featuring a port-injection and a direct-injection fueling system in order to improve fuel efficiency and engine performance. Experimental results show increased cylinder-to-cylinder variation in IMEP as IVC timing moves from 570°ATDC to 610°ATDC, indicating an increasingly uneven fuel distribution between cylinders.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Journal Article

Detailed Analysis of U.S. Department of Energy Engine Targets Compared to Existing Engine Technologies

2020-04-14
2020-01-0835
The U.S. Department of Energy, Vehicle Technologies Office (U.S. DOE-VTO) has been developing more energy-efficient and environmentally friendly highway transportation technologies that would enable the United States to burn less petroleum on the road. System simulation is an accepted approach for evaluating the fuel economy potential of advanced (future) technology targets. U.S. DOE-VTO defines the targets for advancement in powertrain technologies (e.g., engine efficiency targets, battery energy density, lightweighting, etc.) Vehicle system simulation models based on these targets have been generated in Autonomie, reflecting the different EPA classifications of vehicles for different advanced timeframes as part of the DOE Benefits and Scenario (BaSce) Analysis. It is also important to evaluate the progress of these component technical targets compared to existing technologies available in the market.
Technical Paper

Detailed Characterization of Morphology and Dimensions of Diesel Particulates via Thermophoretic Sampling

2001-09-24
2001-01-3572
A thermophoretic particulate sampling device was used to investigate the detailed morphology and microstructure of diesel particulates at various engine-operating conditions. A 75 HP Caterpillar single-cylinder direct-injection diesel engine was operated to sample particulate matter from the high-temperature exhaust stream. The morphology and microstructure of the collected diesel particulates were analyzed using a high-resolution transmission electron microscope and subsequent image processing/data acquisition system. The analysis revealed that spherical primary particles were agglomerated together to form large aggregate clusters for most of engine speed and load conditions. Measured primary particle sizes ranged from 34.4 to 28.5 nm at various engine-operating conditions. The smaller primary particles observed at high engine-operating conditions were believed to be caused by particle oxidation at the high combustion temperature.
Technical Paper

Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends

2013-09-08
2013-24-0185
Detailed properties of particulate matter (PM) emissions from a gasoline direct injection (GDI) engine were analyzed in terms of size, morphology, and nanostructures, as gasoline and its ethanol blend E20 were used as a fuel. PM emissions were sampled from a 0.55L single-cylinder GDI engine by means of a scanning mobility particle sizer (SMPS) for size measurements and a self-designed thermophoretic sampling device for the subsequent analyses of size, morphology and nanostructures using a transmission electron microscope (TEM). The particle sizes were evaluated with variations of air-fuel equivalence ratio and fuel injection timing. The most important result from the SMPS measurements was that the number of nucleation-mode nanoparticles (particularly those smaller than 10 - 15 nm) increased significantly as the fuel injection timing was advanced to the end-of-injection angle of 310° bTDC.
Technical Paper

Determining Off-cycle Fuel Economy Benefits of 2-Layer HVAC Technology

2018-04-03
2018-01-1368
This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state.
Technical Paper

Development and Evaluation of a Diesel Powered Truck Cooling System Computer Simulation Program

1982-02-01
821048
A computer simulation program was developed to simulate the thermal responses of an on-highway, heavy duty diesel powered truck in transient operation for evaluation of cooling system performance. Mathematical models of the engine, heat exchangers, lubricating oil system, thermal control sensors (thermostat and shutterstat), auxiliary components, and the cab were formulated and calibrated to laboratory experimental data. The component models were assembled into the vehicle engine cooling system model and used to predict air-to-boil temperatures. The model has the capability to predict real time coolant, oil and cab temperatures using vehicle simulation input data over various routes.
Technical Paper

Development and Validation of a Primary Breakup Model for Diesel Engine Applications

2009-04-20
2009-01-0838
Fuel injection characteristics, in particular the atomization and penetration of the fuel droplets in the region close to the nozzle orifice, are known to affect emission and particulate formation in Diesel engines. It is also well established that the primary fuel atomization process is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. Typical breakup models in the literature however, do not consider the effects of cavitation and turbulence from nozzle injector. In this paper, a comprehensive primary breakup model incorporating the inner nozzle flow effects such as cavitation and turbulence along with aerodynamically induced breakup is developed and incorporated in the CONVERGE CFD code. This new primary breakup model is tested in a constant volume spray chamber against various spray data available in the literature.
Technical Paper

Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions

2018-04-03
2018-01-0848
The CFR engine is the widely accepted platform to test standard Research Octane Number (RON) and Motored Octane Number (MON) for determining anti-knock characteristics of motor fuels. With increasing interest in engine downsizing, up-torquing, and alternative fuels for modern spark ignition (SI) engines, there is a need to better understand the conditions that fuels are subjected to in the CFR engine during octane rating. To take into account fuel properties, such as fuel heat of vaporization, laminar flame speed and auto-ignition chemistry; and understand their impacts on combustion knock, it is essential to estimate accurate cylinder conditions. In this study, the CFR F1/F2 engine was modeled using GT-Power with the Three Pressure Analysis (TPA) and the model was validated for different fuels and engine conditions.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Development of Variable Temperature Brake Specific Fuel Consumption Engine Maps

2010-10-25
2010-01-2181
Response Surface Methodology (RSM) techniques are applied to develop brake specific fuel consumption (BSFC) maps of a test vehicle over standard drive cycles under various ambient conditions. This technique allows for modeling and predicting fuel consumption of an engine as a function of engine operating conditions. Results will be shown from Federal Test Procedure engine starts of 20°C, and colder conditions of -7°C. Fueling rates under a broad range of engine temperatures are presented. Analysis comparing oil and engine coolant as an input factor of the model is conducted. Analysis comparing the model to experimental datasets, as well as some details into the modeling development, will be presented. Although the methodology was applied to data collected from a vehicle, the same technique could be applied to engines run on dynamometers.
Technical Paper

Development of a Reduced-Order Design/Optimization Tool for Automotive Engines Using Massively Parallel Computing

2015-09-06
2015-24-2390
Design and optimization of automotive engines present unique challenges on account of the large design space and conflicting constraints. A notable example of such a problem is optimizing the fuel consumption and reducing emissions over the drive cycle of an automotive engine. There are over twenty design variables (including operating conditions and geometry) for the above-mentioned problem. Conducting design, analyses, and optimization studies over such a large parametric space presents a serious computational challenge. The large design parameter space precludes the use of detailed numerical or experimental investigations. Physics-based reduced-order models can be used effectively in the design and optimization of such problems.
Journal Article

Development of a Supercharged Octane Number and a Supercharged Octane Index

2023-04-11
2023-01-0251
Gasoline knock resistance is characterized by the Research and Motor Octane Number (RON and MON), which are rated on the CFR octane rating engine at naturally aspirated conditions. However, modern automotive downsized boosted spark ignition (SI) engines generally operate at higher cylinder pressures and lower temperatures relative to the RON and MON tests. Using the naturally aspirated RON and MON ratings, the octane index (OI) characterizes the knock resistance of gasolines under boosted operation by linearly extrapolating into boosted “beyond RON” conditions via RON, MON, and a linear regression K factor. Using OI solely based on naturally aspirated RON and MON tests to extrapolate into boosted conditions can lead to significant errors in predicting boosted knock resistance between gasolines due to non-linear changes in autoignition and knocking characteristics with increasing pressure conditions.
Technical Paper

Development of an Improved Residuals Estimation Model for Dual Independent Cam Phasing Spark-Ignition Engines

2013-04-08
2013-01-0312
Estimating internal residual during engine operation is essential to robust control during startup, steady state, and transient operation. Internal residual has a significant effect on combustion flame propagation, combustion stability and emissions. Accurate residual estimate also provides a better foundation for optimizing open loop fuel control during startup, while providing a basis for reducing emissions during closed loop control. In this paper we develop an improved model to estimate residual gas fraction by means of isolation and characterization of the physical processes in the gas exchange. Examining existing residuals model as the base, we address their deficiencies making changes to appropriate terms to the model. Existing models do not work well under wide angle dual independent cam phasing. The improved residual estimation model is not limited by the initial data set used for its calibration and does not need cylinder pressure data.
Technical Paper

Development of an Integrated Design Tool for Real-Time Analyses of Performance and Emissions in Engines Powered by Alternative Fuels

2013-09-08
2013-24-0134
Development of computationally fast, numerically robust, and physically accurate models to compute engine-out emissions can play an important role in the design, development, and optimization of automotive engines powered by alternative fuels (such as natural gas and H2) and fuel blends (such as ethanol-blended fuels and biodiesel-blended fuels). Detailed multidimensional models that couple fluid dynamics and chemical kinetics place stringent demands on the computational resources and time, precluding their use in design and parametric studies. This work describes the development of an integrated design tool that couples a fast, robust, physics-based, two-zone quasi-dimensional engine model with modified reaction-rate-controlled models to compute engine-out NO and CO for a wide variety of fuel-additive blends.
Technical Paper

Diagnostics for Combustion Metrics in Natural Gas Fuelled Reciprocating Engines

2011-01-19
2011-26-0007
Two diagnostics were developed that are particularly suitable for use with natural gas-fuelled reciprocating engines that are used for power generation applications. The first diagnostic relates flame chemiluminescence to thermodynamic metrics relevant to engine combustion - Heat Release Rate (HRR) and in-cylinder bulk gas temperature. Studies were conducted in a single-cylinder natural gas-fired reciprocating engine that could simulate turbocharged conditions with Exhaust Gas Recirculation. Crank-angle-resolved spectra (266 to 795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions and by holding the speed at 1800 rpm and Brake Mean Effective Pressure (BMEP) at 12 bar. The effect of dilution on CO₂* chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6 - 1.0) and by varying the Exhaust Gas Recirculation rate.
X